
ap_die

ap_invoke_handler

Authorization check

decl_die( status,
phase, r )

modify Request-URI:
ap_unescape_URL();
ap_getparents()

Read Configuration:
 location_walk()

ap_translate_name

Read Configuration:
 directory_walk()

file_walk()
location_walk()

ap_header_parse

r->proxyreq != NOT_PROXY
&& r->parsed_uri.scheme != NULL
&& strcmp(r->parsed_uri.scheme, "http") == 0

ap_find_types
(type_checker)

ap_run_fixups

ap_finalize_request_
protocol

Now we declare our content handlers, which are
invoked when the server encounters a document
which our module is supposed to have a chance to
see.  (See mod_mime's SetHandler and AddHandler
directives, and the mod_info and mod_status
examples, for more details.)
Since content handlers are dumping data directly into
the connexion  (using the r*() routines, such as
rputs() and rprintf()) without intervention by other
parts of the server, they need to make sure any
accumulated HTTP headers are sent first.  This is
done by calling send_http_header().  Otherwise, no
header will be sent at all, and the output sent to the
client will actually be HTTP-uncompliant.
---------------------------------------------------------------------
The return value instructs the caller concerning what
happened and what to do next:

OK ("we did our thing")
DECLINED ("this isn't something with which we

want to get involved")
HTTP_mumble ("an error status should be

reported")

This routine is called to perform any module-specific fixing of
header fields, et cetera.  It is invoked just before any content-
handler.
The return value is OK, DECLINED, or HTTP_mumble.  If we
return OK, the server will still call any remaining modules with an
handler for this phase.

This routine is called to determine and/or set the various
document type information bits, like Content-type (via r->
content_type), language, et cetera.
The return value is OK, DECLINED, or HTTP_mumble.  If we
return OK, no further modules are given a chance at the request
for this phase.

This routine is called to check to see if the resource being
requested requires authorisation.
The return value is OK, DECLINED, or HTTP_mumble.  If we
return OK, no other modules are called during this phase. If *all*
modules return DECLINED, the request is aborted with a server
error.

This routine is called to check the authentication information
sent with the request (such as looking up the user in a database
and verifying that the [encrypted] password sent matches the
one in the database).
The return value is OK, DECLINED, or some HTTP_mumble
error (typically HTTP_UNAUTHORIZED).  If we return OK, no
other modules are given a chance at the request during this
phase.

This routine is called to check for any module-specific restric-
tions placed upon the requested resource.  (See the
mod_access module for an example.)
The return value is OK, DECLINED, or HTTP_mumble.  All
modules with an handler for this phase are called regardless of
whether their predecessors return OK or DECLINED.  The first
one to return any other status, however, will abort the sequence
(and the request) as usual.

This routine is called to give the module a chance to look at the
request headers and take any appropriate specific actions early
in the processing sequence.
The return value is OK, DECLINED, or HTTP_mumble.  If we
return OK, anyremaining modules with handlers for this phase
will still be called.

This routine gives our module an opportunity to translate the URI
into an actual filename.  If we don't do anything special, the server's
default rules (Alias directives and the like) will continue to be
followed.
The return value is OK, DECLINED, or HTTP_mumble.  If we return
OK, no further modules are called for this phase.

finalize_request_protocol is called at completion of sending the
response.  It's sole purpose is to send the terminating protocol
information for any wrappers around the response message body
(i.e., transfer encodings).  It should have been named
finalize_response.

ap_check_access

ap_check_userid

ap_check_authS

S

A

S

A

S

A

CHK

NOP

log_error(...)

ap_send_
http_trace

(r->proxyreq == NOT_PROXY)
&& (r->method_number == M_TRACE)

status == DECLINED

status == DONE

handlerDECLINED

OK

send_http_header()

(send content)

handlerDECLINED

OK

send_http_header()

(send content)

log_error(...)

r->handler ?

A AAA
Process All callbacks until the result is
neither "DECLINED" nor "OK"

S SSS
Process callbacks until the result differs
from "DECLINED" (which results in one
Single successful callback)

See also procedure run_method()

HTTP Request Processing:
(process_request_internal)

(check result: OK)
&&  (auth_type(r) != NULL)

(check result: OK)
&&  (auth_type(r) != NULL)

Callback legend:

satisfies(r) =
ALLch

ec
k_

ac
ce

ss
(r)

re
tu

rn
va

lu
e

so
m

e_
au

th
_r

eq
ui

re
d(

r)

au
th

_t
yp

e(
r)

d_d(E#x,
"chk_acs", r )

CHK

NOP
d_d(ISE,  "p a.

AT n s!", r )

d_d(E#x,  "p a.
AT n s!", r )

NOP

NOP

satisfies(r) =
ANY

T

F

NULL

"..."
OK

E#
x

T

F

NULL

"..."

NULL

"..."

NULL

"..."

CHK

CHK

d_d(E#x,
"chk_acs", r )


